Login
 Forum
 
 
Thesis topic proposal
 
Péter Görög
Stability analysis of seismic load induced rockslides

THESIS TOPIC PROPOSAL

Institute: Budapest University of Technology and Economics
civil engineering
Pál Vásárhelyi Doctoral School of Civil Engineering and Earth Sciences

Thesis supervisor: Péter Görög
Location of studies (in Hungarian): BME Geotechnika és Mérnökgeológia Tanszék
Abbreviation of location of studies: BMEGM


Description of the research topic:

Stability analysis of rock slopes is a complex task. One of the most important input parameters is the geometrical properties of discontinuities, which can be investigated with in-situ measurements. Furthermore, the strength parameters of the rock mass have great importance also. If the needed input parameters are available, the first step of the stability calculations is the kinematic analysis to determine if the failure is possible along discontinuity surfaces. After the kinematic analysis the probability or the safety factor of the local planar, wedge or toppling failure can be calculated. The last step is the global stability analysis of the whole slope.
The cause of the failure can be earthquakes, therefore the investigation of this topic is important both the local both the global stability analysis. Furthermore, the earthquake can induce rock falls as well.
The planned research starts from internationally described basic results which should be developed with numerical modelling. The analyses are planned to deliver on real rock slopes in Hungary with different host rocks. It is planned to investigate rock slopes consist of hard rocks such as dolomites, dense limestone, calcareous marl) where the failure effected mostly by discontinuities. And rock slopes cut into weak rocks such as porous limestone, rhyolite tuff, marl will be investigated as well where rather rock mass failure occurs so the global stability is important.
The task of the PhD student firstly to get the input parameters for the modelling: in-situ investigations and laboratory tests. Then 2D and 3D dynamic numerical analyses are planned to on different rock slopes The comparison between the behavior of hard rocks and weak rock slopes under seismic load can provide valuable results.

Number of students who can be accepted: 1

Deadline for application: 2018-12-20


2024. IV. 17.
ODT ülés
Az ODT következő ülésére 2024. június 14-én, pénteken 10.00 órakor kerül sor a Semmelweis Egyetem Szenátusi termében (Bp. Üllői út 26. I. emelet).

 
All rights reserved © 2007, Hungarian Doctoral Council. Doctoral Council registration number at commissioner for data protection: 02003/0001. Program version: 2.2358 ( 2017. X. 31. )