Habib Giuseppe
Global stability and robustness analysis of nonlinear mechanical systems


Intézmény: Budapesti Műszaki és Gazdaságtudományi Egyetem
gépészeti tudományok
Pattantyús-Ábrahám Géza Gépészeti Tudományok Doktori Iskola

témavezető: Habib Giuseppe
helyszín (magyar oldal): Department of Applied Mechanics
helyszín rövidítés: MOGI

A kutatási téma leírása:

a.) Preliminaries: One of the main problems caused by nonlinearities in mechanical systems is that stability analysis is not a sufficient tool for assessing the safety of a device. In particular, the analysis based on a linearized system, typical in engineering practice, might overlook dangerous solutions of the dynamical system at hand co-existing with the desired one, which might be triggered if the system undergoes sufficiently large perturbations.

b.) Aim of research: This research aims at defining a new procedure for assessing the robustness against external perturbation of stable solutions of a dynamical system. The procedure will be based on time simulations or experiments

c.) Tasks, main items, necessary time:
- study existing methods for basins of attraction estimation (12 months)
- study existing robustness measures (12 months)
- develop an algorithm for robustness assessment exploiting trajectories in the phase space of mechanical systems (12-18 months)
- apply the procedure to archetypal examples of multi-stable systems, such as the Helmholtz, the Duffing, and the rigid block oscillators (12-18 months)
- choosing one of the multi-stable systems presented at the previous point, implement the developed algorithm experimentally for robustness assessment (12 months)
Estimated necessary time: 4 years

d.) Required equipment:
- one laptop equipped with a relatively fast processor
- mechanical components, such as spring, plates, and beams, are necessary for mechanical tests

e.) Expected scientific results: The research outcome will mainly constitute an easy-to-use algorithm for robustness assessment, implementable in various engineering fields. A tool so far missing.

f.) References:
[1] S. Lenci and G. Rega, Global Nonlinear Dynamics for Engineering Design and System Safety. Springer, 2019.
[2] J. M. T. Thompson, “Chaotic phenomena triggering the escape from a potential well,” Proceedings of the Royal Society of London. A, vol. 421, no. 1861, pp. 195–225, 1989.
[3] C. S. Hsu, Cell-to-cell mapping: a method of global analysis for nonlinear systems, vol. 64. Springer Science & Business Media, 2013.

előírt nyelvtudás: english
felvehető hallgatók száma: 1

Jelentkezési határidő: 2021-03-23

Minden jog fenntartva © 2007, Országos Doktori Tanács - a doktori adatbázis nyilvántartási száma az adatvédelmi biztosnál: 02003/0001. Program verzió: 2.2358 ( 2017. X. 31. )